
 DNSSEC-Tools Developers Guide

1 December 2006

SUBMITTED BY
SPARTA, Inc.
7110 Samuel Morse Dr.
Columbia, MD 21046-3401

This page intentionally left blank.

Table of Contents

1 Introduction...1
2 Validator Library Developer’ s Guide..2

2.1 Application Instrumentation for DNSSEC...2
2.1.1 Example code..4

2.1.1.1 val_res_query()..4
2.1.1.2 val_gethostbyname()..4
2.1.1.3 val_getaddrinfo()..5

2.2 DNSSEC Status Values Returned by libval...5
2.3 Validator Configuration...6

2.3.1 Validator Resolver configuration...6
2.3.2 Validator Policy configuration..6

2.3.2.1 Trust Anchor configuration...6
2.3.2.2 Zone Security Expectation configuration...7

2.4 Controlling Validator Behavior Within Applications..7
2.5 Observing the Finer Details..8

2.5.1 Authentication Chain Status Values..10
2.5.1.1 RRSet status values...10
2.5.1.2 Validation Chain Status Values..10
2.5.1.3 Signature Status Values ..11
2.5.1.4 DNSKEY Status Values...12
2.5.1.5 Insufficient Data status values...13
2.5.1.6 DNS Error status values...13

2.5.2 Example Results for validate Application..13
2.5.2.1 Validated Answer from a Trusted Zone...14
2.5.2.2 Validated Answer from a Sub-domain of a Trusted Zone................................15
2.5.2.3 Non-validated Answer from a Trusted Zone (Bogus)......................................16
2.5.2.4 NXDOMAIN from a Trusted Zone (Proof of non-existence)............................17
2.5.2.5 Answer from an Unsigned Zone (Unsecure)...18

2.6 DNSSEC Instrumentation For Unsupported Resolver Calls..19
2.7 Case Study: OpenSSH...20

2.7.1 Simple Client Validation On Connection...21
2.7.2 Validation of SSHFP Record Retrieval..22

This page intentionally left blank.

DNSSEC-TOOL Developer's Guide

1 Introduction

This document is intended to assist developers wishing to enhance applications to perform
DNSSEC validation when resolving domain names.

This document assumes a basic level of knowledge about DNSSEC.

1

DNSSEC-TOOL Developer's Guide

2 Validator Library Developer’ s Guide

This section describes how one can use the interfaces provided by the validator library,
libval(3), to build DNSSEC-aware programs.

The validator library allows applications to check the authenticity of data returned by the
DNS by using the security extensions provided by DNSSEC. The library exports a number of
interfaces that applications may use in place of legacy resolver interfaces provided by the
libres(3) library. Additional interfaces that allow more visibility into the validation process are
also available. This allows for the creation of applications that are either only interested in a
basic "trusted" or "not-trusted" result, or more sophisticated applications that can look for
specific errors as a sign of some network abnormality or attack.

The process of transitioning an application from using simple DNS towards being
DNSSEC-aware consists of three steps –

1. Instrumentation – making applications capable of seeing DNSSEC results
2. Action – making applications act upon DNSSEC results
3. Policy – allowing applications control over how DNSSEC status values are

determined.

Section 2.1 describes the interfaces an application would use in order access the results of
DNSSEC evaluation. Section 2.2 describes the types of results the libval(3) interfaces can
return after validation. Section 2.3 introduces validator policy and describes the syntax of the
validator configuration file. Section 2.4 describes how applications can be made more flexible
in their choosing of validator policy at run time. Section 2.5 describes other validator
interfaces that allow the application to obtain greater detail about the validation process.
Section 2.6 describes how one could write their own custom resolver interfaces using the
interfaces described in Section 2.5. Section 2.7 describes how DNSSEC validation was
added to an existing application.

2.1 Application Instrumentation for DNSSEC

Applications that only use res_query(), gethostbyname() and getaddrinfo() from the
libres(3) for name resolution can be easily made DNSSEC-aware by using similarly named
interfaces provided by the validator library - val_res_query(), val_gethostbyname() and
val_getaddrinfo(). These interfaces perform DNSSEC validation of DNS responses in
addition to name resolution. It is also possible for applications that use other interfaces for
querying the DNS to be made DNSSEC-aware, but this requires a little more effort. This is
described in Section 2.6.

2

DNSSEC-TOOL Developer's Guide

The prototypes of val_res_query(), val_gethostbyname() and val_getaddrinfo() are
given below:

int val_res_query(const val_context_t *ctx, const char *dname, int class, int type,
 u_char *answer, int anslen, val_status_t *val_status);

struct hostent *val_gethostbyname(val_context_t * ctx, const char *name,

 val_status_t * val_status);

int val_getaddrinfo(val_context_t * ctx, const char *nodename, const char *servname,
 const struct addrinfo *hints, struct val_addrinfo **res);

val_res_query(), val_gethostbyname() and val_getaddrinfo() are semantically
equivalent to res_query(), gethostbyname() and getaddrinfo() respectively, with slightly
differing syntaxes. The essential difference between the interfaces provided by libval(3) and
libres(3) is that the former includes additional parameters for controlling the validation
process and returning the value of the DNSSEC status.

The validation policy is encapsulated in an opaque validator context object, which has a
type of val_context_t. Setting the context parameter in interfaces exported by the libval
library to NULL will result in the library using the default validator policy. Configuration of

validator policy is described in section 2.3.

The val_getaddrinfo() function does have one important difference from its counterpart.
The structure which is used to return the addresses is a val_addrinfo structure, which has an
additional member, ai_val_status, to return the validation status for each address.

Return values from each of the libval APIs are similar to their libres(3) counterparts and
similar tests for success and failure must be made following invocation of these calls. Also,
the structures allocated by the val_gethostbyname() and val_getaddrinfo() interfaces must
be released when they are no longer required, using the val_freehostent() and
val_freeaddrinfo() interfaces, respectively.

3

DNSSEC-TOOL Developer's Guide

2.1.1 Example code

The following code snippets gives examples of how one might change code using existing
libres interfaces in place of the ones provided by libval(3).

2.1.1.1 val_res_query()

An application using res_query() can easily be updated to use val_res_query().

int use_val_res_query(int argc, char *argv[])
{

 val_status_t val_status;
 unsigned char answer[8096];
 int ret_val, answer_len;

 if (argc < 2) {

 printf("Usage: %s <domain-name>\n", argv[0]);
 exit(1);
 }

 length = val_res_query(NULL, argv[1], ns_c_in, ns_t_a,

 answer, sizeof(answer), &val_status);
 if ((lenght < 0) || (length > sizeof(answer)) {
 /* error handling */
 }
 else if (!val_istrusted(val_status))

 printf("*** WARNING: DNS resolution is not trusted (%s)",
 p_val_status(val_status));
 else
 printf("ValStatus: %s", p_val_status(val_status));

 return 0;
}

2.1.1.2 val_gethostbyname()

Similarly, gethostbyname() can be updated to val_gethostbyname(). Note that
val_freehostent() must be used in place of any existing freehostent() calls.

int use_val_gethostbyname(int argc, char *argv[])
{
 val_status_t val_status;

 struct hostent *h = NULL;

 if (argc < 2) {
 printf("Usage: %s <hostname>\n", argv[0]);
 exit(1);

 }

 h = val_gethostbyname(NULL, argv[1], &val_status);
 if (h)
 printf("DNSSEC Status = %d [%s]\n", val_status, p_val_status(val_status));

 return 0;
}

4

DNSSEC-TOOL Developer's Guide

2.1.1.3 val_getaddrinfo()

Finally, getaddrinfo() can be updated to val_getaddrinfo(). Note that
val_freeaddrinfo() must be used in place of any existing freeaddrinfo() calls.

int use_val_getaddrinfo(int argc, char *argv[])

{
 int ret_val;
 struct val_addrinfo *ainfo = NULL;

 if (argc < 2) {
 printf("Usage: %s <hostname>\n", argv[0]);
 exit(1);
 }

 ret_val = val_getaddrinfo(NULL, argv[1], NULL, NULL, &ainfo);
 if (retval == VAL_NO_ERROR)
 printf("DNSSEC Status = %d [%s]\n", ainfo->ai_val_status,
 p_val_status(ainfo->ai_val_status));
 if (ainfo!= NULL)

 val_freeaddrinfo(ainfo);

 return 0;
}

2.2 DNSSEC Status Values Returned by libval

The result from DNSSEC processing is available to the application as an integer value.
There are different ways to obtain the DNSSEC status for a response to a query based on the
interface used.

� val_res_query(): The val_status parameter.
� val_gethostbyname(): The val_status parameter.
� val_getaddrinfo(): The ai_val_status member of the val_addrinfo parameter.

A successful call will have a status of VAL_NO_ERROR. Several convenience functions are
available to help interpret validator status values. Their prototypes are:

int val_istrusted(int valerrno);
int val_isvalidated(int valerrno);
char *p_val_status(int valerrno);

val_istrusted(), can be used to determine if a DNSSEC status values is considered
trusted. This function returns 0 for untrusted status values, and a non-zero value for untrusted
statuses. The status values that are considered trusted are: VAL_SUCCESS,
VAL_NONEXISTENT_NAME, VAL_NONEXISTENT_TYPE, VAL_NONEXISTENT_NAME_NOCHAIN,
VAL_NONEXISTENT_TYPE_NOCHAIN, VAL_NONEXISTENT_NAME_OPTOUT, VAL_PROVABLY_UNSECURE,

VAL_IGNORE_VALIDATION, VAL_TRUSTED_ZONE and VAL_LOCAL_ANSWER.

val_isvalidated(), can be used to determine if a trusted DNSSEC status value is
cryptographically validated. This function returns 0 for validated status values, and a non-zero

5

DNSSEC-TOOL Developer's Guide

value for non-validated statuses (every thing except VAL_SUCCESS, VVAL_NONEXISTENT_NAME

and VAL_VAL_NONEXISTENT_TYPE).

DNSSEC status values can be displayed as text using the p_val_status() interface.

2.3 Validator Configuration

The validator library reads configuration information from two separate files. By default, these
files are /etc/resolv.conf and /etc/dnsval.conf.

2.3.1 Validator Resolver configuration

Resolver configuration is specified in /etc/resolv.conf. Only the nameserver option is

supported in the resolv.conf file. All other options are silently ignored. The nameserver option

is used to specify the IP address of the name server to which queries will be sent by default.

nameserver 10.0.0.1

An application that wishes to use a different file for the resolver configuration can specify
the file by passing the full path to resolver_config_set().

2.3.2 Validator Policy configuration

Local policy for the validator is stored in the local configration system (typically the
configuration file, /etc/dnsval.conf). Policies are identified by simple text strings called labels,
which must be unique within the configuration system. As an example, "browser" could be
used as the label that defines the validator policy for all web-browsers in a system. A label
value of ":" identifies the "default" policy, or the policy that is used when a NULL context is
specified as the ctx parameter. The default policy is unique within the configuration system.
Furthermore, the ':' character is only allowed in the default policy label. If the policy identified
by the ':' label does not exist in the configuration system, the first policy in the configuration
system is used as the default policy.

<label> <keyword> <additional-data>;

Currently two different values for keyword are defined: trust-anchor and zone-security-
expectation.

An application that wishes to use a different file for the validator policy configuration can
specify the file by passing the full path to dnsval_conf_set().

2.3.2.1 Trust Anchor configuration

A trust-anchor policy fragment specifies the trust anchors for a sequence of zones. The
additional data portion for this keyword is a sequence of the zone name and a quoted string

6

DNSSEC-TOOL Developer's Guide

containing the RDATA portion for the trust anchor’ s DNSKEY. For example:

<label> trust-anchor <zone> <zone-key> [<zone> <zone-key>];

mozilla trust-anchor
 fruits.netsec.tislabs.com.
 "257 3 5
 AQO8XS4y9r77X9SHBmrxMoJf1Pf9AT9Mr/L5BBGtO9/e9f/zl4FFgM2l
 B6M2XEm6mp6mit4tzpB/sAEQw1McYz6bJdKkTiqtuWTCfDmgQhI6/Ha0
 EfGPNSqnY 99FmbSeWNIRaa4fgSCVFhvbrYq1nXkNVyQPeEVHkoDNCAlr
 qOA3lw=="
 netsec.tislabs.com.
 "257 3 5
 AQO8XS4y9r77X9SHBmrxMoJf1Pf9AT9Mr/L5BBGtO9/e9f/zl4FFgM2l
 B6M2XEm6mp6mit4tzpB/sAEQw1McYz6bJdKkTiqtuWTCfDmgQhI6/Ha0
 EfGPNSqnY 99FmbSeWNIRaa4fgSCVFhvbrYq1nXkNVyQPeEVHkoDNCAlr
 qOA3lw=="
 ;

2.3.2.2 Zone Security Expectation configuration

A zone-security policy fragment specifies the local security expectation for a zone. The
additional data portion for this keyword is a sequence of the zone name and its trust status –
trusted, untrusted or ignore.

A zone security policy of ignore or trusted will result in no validation being done for the
specified zone. A policy of validate indicates that the specified zone should be validated up to
a configured trust anchor.

Here is an example configuration for zone security expectations:

<label> zone-security-expectation <zone> <validate|ignore|untrusted>

validate_all zone-security-expectation . validate;

validate_none zone-security-expectation . ignore;

mozilla zone-security-expectation wesh.fruits.netsec.tislabs.com untrusted;

2.4 Controlling Validator Behavior Within Applications

The validator library allows multiple applications to operate with differing validator policies
at the same instance. A handle to each of the different instantiations of the validator under
different policies is available through the validator context. The prototypes for the policy
manipulation functions are:

int val_create_context(const char *scope, val_context_t **newcontext);
void val_free_context(val_context_t *context);

7

DNSSEC-TOOL Developer's Guide

Applications can create a new validator context using the val_create_context() method.
This method parses the resolver and validator configuration files and creates a new context
object, which is returned via the handle newcontext.

The val_create_context() creates a handle to a validator policy context. The scope
parameter identifies the particular policy to be used as the active policy for the context during
validation. Policy scopes have a hierarchical organization, with each member in the hierarchy
identifying a policy label in the configuration system. The effective policy for the context is
determined by the relative ordering of the first occurrence of the label in the policy scope. The
validator forms an effective policy by cumulatively applying the policies for each label in the
hierarchy. For example, for the policy scope "mozilla:browser", the effective policy is
computed by applying policies for the "browser" and "mozilla" policies, in that order. A ':'
character in the policy scope is used to indicate the default policy in the hierarchy. A NULL
scope creates a context with only the default base policy .

Contexts that were created using the val_create_context() interface should be destroyed
when they are no longer needed, using the val_free_context() method.

2.5 Observing the Finer Details

The val_resolve_and_check() interface forms the core of the validator functionality and
can be used to query a set of name servers for a tuple, verify and validate the response.
Verification is the step of checking the RRSIGs and validation includes performing verification
up the chain of trust all the way to a trust anchor. All of the interfaces described above that
are used to fetch and validate DNS answers make use of this interface.

int val_resolve_and_check(val_context_t *context, u_char *domain_name_n,
 const u_int16_t type, const u_int16_t class,
 const u_int8_t flags, struct val_result_chain
**results);
void free_result_chain(struct val_result **results);

The domain_name_n parameter is the queried name in DNS wire format. The conversion
from host format to DNS wire format can be done using the ns_name_pton() libres(3) helper
function that is also exported by libval(3).

The libval library internally allocates memory for this parameter, so that memory must be
freed by the invoking application using the val_free_result_chain() interfaces.

val_resolve_and_check() returns NO_ERROR on success. Answers returned by
val_resolve_and_check() are made available in the results chain. Each answer is a distinct
RRset; multiple RRs within the RRset are treated as the same answer. Multiple answers are
possible when type is ns_t_any or ns_t_rrsig.

The val_rc_answer member of results points to the authentication chain for the RRset.
The authentication chain contains the actual RRset returned by the name server in response

8

DNSSEC-TOOL Developer's Guide

to the query. These structures allow an application to investigate the DNSSEC validation
status of each link in the validation chain. Most applications will only require the first result
structure in the results chain, since this provides a single error code for representing the
authenticity of returned data. Other more intrusive applications such as a DNSSEC
troubleshooting utility may look at the individual authentication chain elements to identify
which particular component in the chain-of-trust led to validation failure, if any.

Upon completion of the val_resolve_and_check() call, the val_ac_status element within
the authentication chain element structure contains the validation status of a particular
authentication chain element. This generally contains a different value than the final DNSSEC
status returned by higher level applications since it only applies to the given authentication
chain element. Successful DNSSEC Status values can only be generated if every component
in the chain of trust was validated, and the chain culminates with a trusted record. The
val_ac_status field may contain one of the values described in the following sections for an
authentication chain element. authentication chain element status values may be displayed as
text using the p_val_status() interface.

9

DNSSEC-TOOL Developer's Guide

2.5.1 Authentication Chain Status Values

2.5.1.1 RRSet status values

� VAL_SUCCESS: Answer received and validated successfully.
� VAL_LOCAL_ANSWER: Answer was available from a local file.
� VAL_BARE_RRSIG: No DNSSEC validation possible, query was for an RRSIG.
� VAL_NONEXISTENT_NAME: No name was present and a valid proof of non-existence

confirming the missing name (NSEC or NSEC3 span) was returned. The components
of the proof were also individually validated.

� VAL_NONEXISTENT_TYPE: No type exists for the name and a valid proof of non-existence
confirming the missing name (NSEC or NSEC3 span) was returned. The components
of the proof were also individually validated.

� VAL_NONEXISTENT_NAME_NOCHAIN: No name was present and a valid proof of non-
existence confirming the missing name (NSEC or NSEC3 span) was returned. The
components of the proof were also identified to be trustworthy, but they were not
individually validated.

� VAL_NONEXISTENT_TYPE_NOCHAIN: No type exists for the name and a valid proof of non-
existence confirming the missing name (NSEC or NSEC3 span) was returned. The
components of the proof were also identified to be trustworthy, but they were not
individually validated.

� VAL_ERROR: Did not have sufficient or relevant data to complete validation, or
encountered a DNS error.

� (VAL_DNS_ERROR_BASE + SR_error): This value contains a resolver error from libsres.
The libsres error is added to VAL_DNS_ERROR_BASE, so this value will lie between
VAL_DNS_ERROR_BASE and VAL_DNS_ERROR_LAST.

� VAL_INDETERMINATE: Lacking information to give a more conclusive answer.
� VAL_BOGUS: Validation failure condition.
� VAL_NOTRUST: All available components in the authentication chain verified properly, but

there was no trust anchor available.
� VAL_IGNORE_VALIDATION: Local policy was configured to ignore validation for the zone

from which this data was received.
� VAL_TRUSTED_ZONE: Local policy was configured to trust any data received from the

given zone.
� VAL_UNTRUSTED_ZONE: Local policy was configured to reject any data received from the

given zone.
� VAL_PROVABLY_UNSECURE: The record or some ancestor of the record in the

authentication chain towards the trust anchor was known to be provably unsecure.

2.5.1.2 Validation Chain Status Values

� VAL_AC_UNSET: The status was not set.

10

DNSSEC-TOOL Developer's Guide

� VAL_AC_DATA_MISSING: No data was returned for a query and the DNS did not indicate
an error.

� VAL_AC_RRSIG_MISSING: RRSIG data could not be retrieved for a resource record.
� VAL_AC_DNSKEY_MISSING: The DNSKEY for an RRSIG covering a resource record could

not be retrieved.
� VAL_AC_DS_MISSING: The DS record covering a DNSKEY record was not available.
� VAL_AC_UNTRUSTED_ZONE: Local policy defined a given zone as untrusted, with no further

validation being deemed necessary.
� VAL_AC_UNKNOWN_DNSKEY_PROTOCOL: The DNSKEY protocol number was unrecognized.
� VAL_AC_NOT_VERIFIED: All RRSIGs covering the RRset could not be verified.
� VAL_AC_VERIFIED: At least one RRSIG covering a resource record had a status of

VAL_AC_RRSIG_VERIFIED.
� VAL_AC_LOCAL_ANSWER: The answer was obtained locally (e.g., from /etc/hosts) and

validation was not performed on the results.
� VAL_AC_TRUST_KEY: A given DNSKEY or a DS record was locally defined to be a trust

anchor.
� VAL_AC_IGNORE_VALIDATION: Validation for the given resource record was ignored,

either because of some local policy directive or because of some protocol-specific
behavior.

� VAL_AC_TRUSTED_ZONE: Local policy defined a given zone as trusted, with no further
validation being deemed necessary.

� VAL_AC_PROVABLY_UNSECURE: The authentication chain from a trust anchor to a given
zone could not be constructed due to the provable absence of a DS record for this
zone in the parent.

� VAL_AC_BARE_RRSIG: The response was for a query of type RRSIG. RRSIGs contain the
cryptographic signatures for other DNS data and cannot themselves be validated.

� VAL_AC_NO_TRUST_ANCHOR: There was no trust anchor configured for a given
authentication chain.

� (VAL_DNS_ERROR_BASE + SR_error): This value contains a resolver error from libsres.
The libsres error is added to VAL_DNS_ERROR_BASE, so this value will lie between
VAL_DNS_ERROR_BASE and VAL_DNS_ERROR_LAST. These values include the following:

� SR_CONFLICTING_ANSWERS: Multiple conflicting answers received for a query.
� SR_REFERRAL_ERROR: Some error encountered while following referrals.
� SR_MISSING_GLUE: Glue was missing.

2.5.1.3 Signature Status Values

� VAL_AC_RRSIG_VERIFIED: The RRSIG verified successfully.
� VAL_AC_WCARD_VERIFIED: A given RRSIG covering a resource record shows that the

record was wildcard expanded.
� VAL_AC_RRSIG_VERIFY_FAILED: A given RRSIG covering an RRset was bogus.
� VAL_AC_DNSKEY_NOMATCH: An RRSIG was created by a DNSKEY that did not exist in the

apex keyset.

11

DNSSEC-TOOL Developer's Guide

� VAL_AC_RRSIG_ALGORITHM_MISMATCH: The keytag referenced in the RRSIG matched a
DNSKEY but the algorithms were different.

� VAL_AC_WRONG_LABEL_COUNT: The number of labels on the signature was greater than
the count given in the RRSIG RDATA.

� VAL_AC_BAD_DELEGATION: An RRSIG was created with a key that did not exist in the
parent DS record set.

� VAL_AC_RRSIG_NOTYETACTIVE: The RRSIG's inception time is in the future.
� VAL_AC_RRSIG_EXPIRED: The RRSIG had expired.
� VAL_AC_INVALID_RRSIG: The RRSIG could not be parsed.
� VAL_AC_ALGORITHM_NOT_SUPPORTED: The RRSIG algorithm was not supported.
� VAL_AC_UNKNOWN_ALGORITHM: The RRSIG algorithm was unknown.
� VAL_AC_ALGORITHM_REFUSED: The RRSIG algorithm was not allowed as per local policy.

2.5.1.4 DNSKEY Status Values

� VAL_AC_SIGNING_KEY: This DNSKEY was used to create an RRSIG for the resource
record set.

� VAL_AC_VERIFIED_LINK: This DNSKEY provided the link in the authentication chain
from the trust anchor to the signed record.

� VAL_AC_UNKNOWN_ALGORITHM_LINK: This DNSKEY provided the link in the authentication
chain from the trust anchor to the signed record, but the DNSKEY algorithm was
unknown.

� VAL_AC_INVALID_KEY: The key used to verify the RRSIG was not a valid DNSKEY.
� VAL_AC_KEY_TOO_LARGE: Local policy defined the DNSKEY size as being too large.
� VAL_AC_KEY_TOO_SMALL: Local policy defined the DNSKEY size as being too small.
� VAL_AC_KEY_NOT_AUTHORIZED: Local policy defined the DNSKEY to be unauthorized for

validation.
� VAL_AC_ALGORITHM_NOT_SUPPORTED: The DNSKEY or DS algorithm was not supported.
� VAL_AC_UNKNOWN_ALGORITHM: The DNSKEY or DS algorithm was unknown.
� VAL_AC_ALGORITHM_REFUSED: The DNSKEY or DS algorithm was not allowed as per

local policy.

12

DNSSEC-TOOL Developer's Guide

2.5.1.5 Insufficient Data status values

In cases where data is insufficient to generate a validation result, val_ac_status may also
contain the following status values. The final validation result in such circumstances is
VAL_ERROR.

� VAL_AC_DATA_MISSING: No data was returned in the response.
� VAL_AC_IRRELEVANT_PROOF: An NSEC received does not contribute towards proving

non-existence.

2.5.1.6 DNS Error status values

There are also many DNS error status values.

� SR_REFERRAL_ERROR: Some error encountered while following referrals.
� SR_MISSING_GLUE: Glue was missing.
� SR_INTERNAL_ERROR: The resolver encountered an internal error.
� SR_TSIG_ERROR: An error occurred during TSIG processing.
� SR_NO_ANSWER: No response was received.
� SR_WRONG_ANSWER: The response was not a valid response for the query.
� SR_HEADER_BADSIZE: The message size was not consistent with header values.
� SR_NXDOMAIN: The rcode of the response was NXDOMAIN.
� SR_FORMERR: The rcode of the response was FORMERR.
� SR_SERVFAIL: The rcode of the response was SERVFAIL.
� SR_NOTIMPL: The rcode of the response was NOTIMPL.
� SR_REFUSED: The rcode of the response was REFUSED.
� SR_DNS_GENERIC_ERROR: The response was received with the rcode set to one of the

well-known error values (NXDOMAIN, FORMERR, SERVFAIL, NOTIMPL or REFUSED).
� SR_EDNS0_VERSION_ERROR: The EDNS0 version was not recognized.
� SR_UNSUPP_EDNS0_LABEL: The EDNS0 label is not supported.
� SR_NAME_EXPANSION_FAILURE: DNS name uncompression failed.
� SR_REFERRAL_ERROR: Referral could not be successfully followed.
� SR_MISSING_GLUE: Glue records were not available for a referral.
� SR_CONFLICTING_ANSWERS: Multiple conflicting answers received for a query.

2.5.2 Example Results for validate Application

Here are a few examples of some results returned by the validator for the dnssec-tools.org
test zone. To help in understanding the returned data, debugging options are specified, which
output the individual status values for each record. Additionally, screen captures from a
debugging session are included, show the relationships between the data structures.

13

DNSSEC-TOOL Developer's Guide

2.5.2.1 Validated Answer from a Trusted Zone

$validate -p -T 1
Original query: name=good-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3, Query-status=Q_ANSWERED:4
 Result: VAL_SUCCESS:131
 name=good-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3 status=VAL_AC_VERIFIED:81
 name=test.dnssec-tools.org class=IN type=DNSKEY[tag=28827] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88

DNSSEC status: VAL_SUCCESS [131]
Validated response:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 0
;; flags: ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; good-A.test.dnssec-tools.org, type = A, class = IN

good-A.test.dnssec-tools.org. 1D IN A 168.150.236.43

14

DNSSEC-TOOL Developer's Guide

2.5.2.2 Validated Answer from a Sub-domain of a Trusted Zone

$ validate -p -T 1
Original query: name=good-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3, Query-status=Q_ANSWERED:4
 Result: VAL_SUCCESS:131
 name=good-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3 status=VAL_AC_VERIFIED:81
 name=test.dnssec-tools.org class=IN type=DNSKEY from-server=192.168.1.3 status=VAL_AC_VERIFIED:81

 name=test.dnssec-tools.org class=IN type=DS from-server=192.168.1.3 status=VAL_AC_VERIFIED:81
 name=dnssec-tools.org class=IN type=DNSKEY[tag=42375] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88
DNSSEC status: VAL_SUCCESS [131]
Validated response:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 0

;; flags: ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; good-A.test.dnssec-tools.org, type = A, class = IN
good-A.test.dnssec-tools.org. 1D IN A 168.150.236.43

15

DNSSEC-TOOL Developer's Guide

2.5.2.3 Non-validated Answer from a Trusted Zone (Bogus)

$ validate -p -T 8
Original query: name=good-cname-to-badsign-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3, Query-
status=Q_ANSWERED:4
 Result: VAL_BOGUS:130
 name=badsign-a.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3 status=VAL_AC_NOT_VERIFIED:51

 name=test.dnssec-tools.org class=IN type=DNSKEY[tag=28827] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88
 Result: VAL_SUCCESS:131
 name=good-cname-to-badsign-A.test.dnssec-tools.org class=IN type=CNAME from-server=192.168.1.3
status=VAL_AC_VERIFIED:81
 name=test.dnssec-tools.org class=IN type=DNSKEY[tag=28827] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88

DNSSEC status: VAL_SUCCESS [131]
Validated response:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 0
;; flags: ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; good-cname-to-badsign-A.test.dnssec-tools.org, type = A, class = IN

good-cname-to-badsign-A.test.dnssec-tools.org. 1D IN CNAME badsign-a.test.dnssec-tools.org.

DNSSEC status: VAL_BOGUS [130]
Non-validated response:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 0

;; flags:; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; good-cname-to-badsign-A.test.dnssec-tools.org, type = A, class = IN
badsign-a.test.dnssec-tools.org. 1D IN A 168.150.236.43

16

DNSSEC-TOOL Developer's Guide

2.5.2.4 NXDOMAIN from a Trusted Zone (Proof of non-existence)

Original query: name=addedlater-A.test.dnssec-tools.org class=IN type=A from-server=192.168.1.3, Query-
status=Q_ANSWERED:4
 Result: VAL_NONEXISTENT_NAME:8
 Associated Proofs Follow:
 name=test.dnssec-tools.org class=IN type=SOA from-server=192.168.1.3 status=VAL_AC_VERIFIED:81

 name=test.dnssec-tools.org class=IN type=DNSKEY[tag=28827] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88
 name=test.dnssec-tools.org class=IN type=NSEC from-server=192.168.1.3 status=VAL_AC_VERIFIED:81
 name=test.dnssec-tools.org class=IN type=DNSKEY[tag=28827] from-server=192.168.1.3 status=VAL_AC_TRUST_KEY:88

DNSSEC status: VAL_NONEXISTENT_NAME [8]

Non-validated response:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 0
;; flags: ad; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 0
;; addedlater-A.test.dnssec-tools.org, type = A, class = IN
test.dnssec-tools.org. 10M IN SOA dns.test.dnssec-tools.org. hardaker.test.dnssec-tools.org. (

1161967857 ; serial
2H ; refresh
1H ; retry
1W ; expiry
10M) ; minimum

test.dnssec-tools.org. 10M IN NSEC baddata-a.test.dnssec-tools.org. NS SOA TXT RRSIG NSEC DNSKEY

17

DNSSEC-TOOL Developer's Guide

2.5.2.5 Answer from an Unsigned Zone (Unsecure)

Original query: name=m3.sparta.com class=IN type=A from-server=192.168.1.3, Query-
status=Q_ANSWERED:4
 Result: VAL_SUCCESS:131
 name=m3.sparta.com class=IN type=A from-server=192.168.1.3 status=VAL_AC_IGNORE_VALIDATION:89

DNSSEC status: VAL_SUCCESS [131]
Validated response:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 0
;; flags: ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; m3.sparta.com, type = A, class = IN
m3.sparta.com. 23h45m35s IN A 157.185.61.3

18

DNSSEC-TOOL Developer's Guide

2.6 DNSSEC Instrumentation For Unsupported Resolver Calls

Applications that make use of resolver calls that are not directly exported by the validator
library would need to implement such wrapper functions themselves. The
val_resolve_and_check() interface is generic enough to allow almost any name resolution
functionality to be made DNSSEC-aware. The following code snippet illustrates how
val_query() is internally implemented using the val_resolve_and_check() interface.

19

DNSSEC-TOOL Developer's Guide

int
val_query(val_context_t * ctx,

 const char *domain_name,
 const u_int16_t class_h,
 const u_int16_t type,
 const u_int8_t flags, struct val_response **resp)
{

 struct val_result_chain *results = NULL;
 int retval;
 val_context_t *context;
 u_char name_n[NS_MAXCDNAME];

 if ((resp == NULL) || (domain_name == NULL))
 return VAL_BAD_ARGUMENT;
 *resp = NULL;

 if (ctx == NULL) {
 if (VAL_NO_ERROR != (retval = val_create_context(NULL, &context)))
 return retval;
 } else
 context = (val_context_t *) ctx;

 val_log(context, LOG_DEBUG,
 "val_query called with dname=%s, class=%s, type=%s",
 domain_name, p_class(class_h), p_type(type));

 if (ns_name_pton(domain_name, name_n, sizeof(name_n)) == -1) {
 if ((ctx == NULL) && context)
 val_free_context(context);
 return (VAL_BAD_ARGUMENT);
 }

 /*
 * Query the validator
 */

 if (VAL_NO_ERROR ==
 (retval =
 val_resolve_and_check(context, name_n, class_h, type, flags,
 &results))) {
 /*

 * Construct the answer response in resp
 */
 retval =
 compose_answer(name_n, type, class_h, results, resp, flags);
 }

 val_log_authentication_chain(context, LOG_DEBUG, name_n, class_h, type,
 context->q_list, results);

 val_free_result_chain(results);

 if ((ctx == NULL) && context)
 val_free_context(context);

 return retval;

}

2.7 Case Study: OpenSSH

In this section, we present some case studies for adding local validation to an application.

20

DNSSEC-TOOL Developer's Guide

The application we selected is the 'ssh' program from OpenSSH. Note Well: the code
changes below are meant as quick examples of adding DNSSEC validation to an

existing example. They are not the complete set of changes that would be needed for
the whole set of applications OpenSSH offers, and unconditionally replace code (i.e.
not configurable options).

2.7.1 Simple Client Validation On Connection

OpenSSH uses the getaddrinfo() function to resolve host names when a client connects
to a ssh server. It is fairly trivial to change this to use val_getaddrinfo() instead. Code
changes are highlighted in bold below.

/* ... */

#include "validator.h"

/* ... */

int
ssh_connect(const char *host, struct sockaddr_storage * hostaddr,
 u_short port, int family, int connection_attempts,
 int needpriv, const char *proxy_command)

{
 int gaierr;
 int on = 1;
 int sock = -1, attempt;

 char ntop[NI_MAXHOST], strport[NI_MAXSERV];
 struct addrinfo hints, *ai, *aitop;

 struct val_addrinfo *val_ainfo = NULL;

 /* ... */

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = family;
 hints.ai_socktype = SOCK_STREAM;
 snprintf(strport, sizeof strport, "%u", port);

 /*if ((gaierr = getaddrinfo(host, strport, &hints, &aitop)) != 0)*/

 if ((gaierr = val_getaddrinfo(NULL, host, strport, &hints, &val_ainfo)) != 0)

 fatal("%s: %.100s: %s", __progname, host,
 gai_strerror(gaierr));

 if (!val_istrusted(aitop->ai_val_status))

 error("*** WARNING: DNS resolution is not trusted (%s)",

 p_val_status(aitop->ai_val_status));

 else

 debug("ValStatus: %s", p_val_status(aitop->ai_val_status));

 /* ... */

 /*freeaddrinfo(aitop);*/

 val_freeaddrinfo(aitop);

 /* ... */

21

DNSSEC-TOOL Developer's Guide

2.7.2 Validation of SSHFP Record Retrieval

OpenSSH has support for validating a server's SSH key fingerprint against a SSHFP
resource record stored in the DNS. Obviously, this is a piece of data that should be validated
if possible. While OpenSSH does have a configuration option to use DNSSEC, it does so by
trusting the validation status returned from a remote DNS server. In this example, we modify
the code to use libval to do the validation locally. Code changes are highlighted in bold
below.

/* ... */

#include "validator.h"

/* ... */

int
getrrsetbyname(const char *hostname, unsigned int rdclass,
 unsigned int rdtype, unsigned int flags,

 struct rrsetinfo **res)
{
 struct __res_state *_resp = _THREAD_PRIVATE(_res, _res, &_res);
 int result;
 struct rrsetinfo *rrset = NULL;

 struct dns_response *response = NULL;

 val_status_t val_status;
 struct dns_rr *rr;
 struct rdatainfo *rdata;
 int length;
 unsigned int index_ans, index_sig;

 u_char answer[ANSWER_BUFFER_SIZE];

/* ... */

 /* make query */

 /*length = res_query(hostname, (signed int) rdclass, (signed int) rdtype,

 answer, sizeof(answer));*/

 length = val_res_query(NULL, hostname, rdclass, rdtype,

 answer, sizeof(answer), &val_status);

 if (!val_istrusted(val_status))
 error("*** WARNING: DNS resolution is not trusted (%s)",

 p_val_status(aitop->ai_val_status));

 else

 debug("ValStatus: %s", p_val_status(aitop->ai_val_status));
 if (length < 0) {
 switch(h_errno) {

 case HOST_NOT_FOUND:
 result = ERRSET_NONAME;
 goto fail;
 case NO_DATA:
 result = ERRSET_NODATA;

 goto fail;
 default:
 result = ERRSET_FAIL;
 goto fail;
 }

 }

/* ... */

22

